The semi-organic semiconductor is thin and flexible and since it’s mostly composed of carbon and hydrogen, it can be easily recycled promising a drastic reduction in e-waste if made commercially viable.

Semi-organic semiconductor developed by Australian researchers is...

Bendable smartphones will no longer be a thing of science fiction. Scientists have  developed a partly organic semiconductor that can efficiently convert electricity into light paving the way for bendable phones. The invention was made by researchers from Australian National University (ANU) and further paves the way for sustainable recycling of smartphones.

The compound is thin and flexible allowing manufacturers to use it making bendable phones. The organic compound has a thickness of just one atom, and is made of up carbon and hydrogen. It’s only a part of the semiconductor developed by the scientists though.

Since the semiconductor is made of semi-organic compounds, it’s biodegradable and can be easily recycled, promising a drastic reduction in e-waste. Presently, e-waste accounts for one of the largest cause for environmental damage as harmful metals like mercury, cobalt, etc. end up in landfills, waterbodies and the likes since they cannot be recycled.

The researchers note that from the experiments conducted using the new hybrid compound, the new semiconductor has been found to be much more efficient as compared to conventional semiconductors made of inorganic materials like silicon. The researchers developed the material molecule by molecule, much like how 3D-printing works. The process is known as chemical vapour deposition.

If the material turns out to be commercially viable, we might soon see a new era of smartphones that are  flexible and bendable, but more importantly, one that doesn’t leave a nasty polluted footprint on the environment.

Digit NewsDeskDigit NewsDesk


‘).insertAfter(‘.inside-container p:eq(1)’); */
// $( ” ).insertAfter(‘.inside-container p:eq(0)’);
//});#}
//method to trunkate the text
function shorten(text, maxLength) {
var ret = text;
if (ret.length > maxLength) {
ret = ret.substr(0,maxLength-3) + “…”;
}
return ret;
}

$(function(){
//function to put utm on DontMiss links
/*if(isDesktop()){
$(‘div.dontMiss > a’).each(function(){
$(this).prop(‘href’, $(this).prop(‘href’)+’?utm_source=within_article&utm_medium=desktop&utm_campaign=related’);
//trunkate dont miss content
var sub = shorten($(this).html(),47);
$(this).html(sub);
});
}else{
$(‘div.dontMiss > a’).each(function(){
$(this).prop(‘href’, $(this).prop(‘href’)+’?utm_source=within_article&utm_medium=mobile&utm_campaign=related’);
});
}*/

//disabled method to append dontmiss links to page content by Mayank
/*$(‘div.dontMiss > a’).each(function(index){
//loop over each list item

// if(index%2 > 0){
// index = index – 1;
// }
if($(‘.inside-container > p:eq(‘+index+’)’).length){
if(isDesktop()){
$(‘.inside-container > p:eq(‘+((index * 2) + 1)+’)’).append(‘

Related: ‘ + $(this).html() + ‘‘ );
}else{
$(‘.inside-container > p:eq(‘+((index * 2) + 1)+’)’).append(‘

Related: ‘ + $(this).html() + ‘‘ );
}
}
});*/
$(‘div.dontMissArea’).hide();

/* if(isDesktop()) {
$(‘div.dontMissArea’).hide();
}else{
$(‘div.dontMissArea’).show();
} */

/*
* ga event tracking on page scroll start and end by Mayank
*/

// Debug flag
var debugMode = false;

// Default time delay before checking location
var callBackTime = 100;

// # px before tracking a reader
var readerLocation = 150;

// Set some flags for tracking & execution
var timer = 0;
var scroller = false;
var endContent = false;
var didComplete = false;

// Set some time variables to calculate reading time
var startTime = new Date();
var beginning = startTime.getTime();
var totalTime = 0;

// Get some information about the current page
var pageTitle = document.title;

// Track the aticle load — disabled
if (!debugMode) {
// ga(‘send’, ‘event’, ‘Reading’, ‘ArticleLoaded’, pageTitle, {‘nonInteraction’: 1});
// console.log(“ga(‘send’, ‘event’, ‘Reading’, ‘ArticleLoaded’, pageTitle, {‘nonInteraction’: 1}”);
} else {
alert(‘The page has loaded. Woohoo.’);
}

// Check the location and track user
function trackLocation() {
bottom = $(window).height() + $(window).scrollTop();
height = $(document).height();

// If user starts to scroll send an event
if (bottom > readerLocation && !scroller) {
currentTime = new Date();
scrollStart = currentTime.getTime();
timeToScroll = Math.round((scrollStart – beginning) / 1000);
if (!debugMode) {
ga(‘send’, ‘event’, ‘Reading’, ‘StartReading’, pageTitle, timeToScroll, {‘metric1’ : timeToScroll});
} else {
alert(‘started reading ‘ + timeToScroll);
}
scroller = true;
}

// If user has hit the bottom of the content send an event
if (bottom >= $(‘.inside-container’).scrollTop() + $(‘.inside-container’).innerHeight() && !endContent) {
currentTime = new Date();
contentScrollEnd = currentTime.getTime();
timeToContentEnd = Math.round((contentScrollEnd – scrollStart) / 1000);
if (!debugMode) {
if (timeToContentEnd = height && !didComplete) {
currentTime = new Date();
end = currentTime.getTime();
totalTime = Math.round((end – scrollStart) / 1000);
if (!debugMode) {
ga(‘send’, ‘event’, ‘Reading’, ‘PageBottom’, pageTitle, totalTime, {‘metric3’ : totalTime});
} else {
alert(‘bottom of page ‘+totalTime);
}
didComplete = true;
}
}

// Track the scrolling and track location
$(window).scroll(function() {
if (timer) {
clearTimeout(timer);
}

// Use a buffer so we don’t call trackLocation too often.
timer = setTimeout(trackLocation, callBackTime);
});
});

‘).insertAfter(“.inside-container p:eq(2)”);
}

});



Source link